Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
Molecules ; 28(11)2023 May 31.
Article in English | MEDLINE | ID: covidwho-20243613

ABSTRACT

Scutellaria barbata D. Don (SB, Chinese: Ban Zhi Lian), a well-known medicinal plant used in traditional Chinese medicine, is rich in flavonoids. It possesses antitumor, anti-inflammatory, and antiviral activities. In this study, we evaluated the inhibitory activities of SB extracts and its active components against HIV-1 protease (HIV-1 PR) and SARS-CoV2 viral cathepsin L protease (Cat L PR). UPLC/HRMS was used to identify and quantify the major active flavonoids in different SB extracts, and fluorescence resonance energy transfer (FRET) assays were used to determine HIV-1 PR and Cat L PR inhibitions and identify structure-activity relationships. Molecular docking was also performed, to explore the diversification in bonding patterns of the active flavonoids upon binding to the two PRs. Three SB extracts (SBW, SB30, and SB60) and nine flavonoids inhibited HIV-1 PR with an IC50 range from 0.006 to 0.83 mg/mL. Six of the flavonoids showed 10~37.6% inhibition of Cat L PR at a concentration of 0.1 mg/mL. The results showed that the introduction of the 4'-hydroxyl and 6-hydroxyl/methoxy groups was essential in the 5,6,7-trihydroxyl and 5,7,4'-trihydroxyl flavones, respectively, to enhance their dual anti-PR activities. Hence, the 5,6,7,4'-tetrahydroxyl flavone scutellarein (HIV-1 PR, IC50 = 0.068 mg/mL; Cat L PR, IC50 = 0.43 mg/mL) may serve as a lead compound to develop more effective dual protease inhibitors. The 5,7,3',4'-tetrahydroxyl flavone luteolin also showed a potent and selective inhibition of HIV-1 PR (IC50 = 0.039 mg/mL).


Subject(s)
COVID-19 , HIV-1 , Scutellaria , Plant Extracts/chemistry , Flavonoids/pharmacology , Peptide Hydrolases , Scutellaria/chemistry , Cathepsin L , Molecular Docking Simulation , RNA, Viral , SARS-CoV-2 , Endopeptidases , Structure-Activity Relationship
2.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: covidwho-20241072

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused more than six million deaths worldwide since 2019. Although vaccines are available, novel variants of coronavirus are expected to appear continuously, and there is a need for a more effective remedy for coronavirus disease. In this report, we isolated eupatin from Inula japonica flowers and showed that it inhibits the coronavirus 3 chymotrypsin-like (3CL) protease as well as viral replication. We showed that eupatin treatment inhibits SARS-CoV-2 3CL-protease, and computational modeling demonstrated that it interacts with key residues of 3CL-protease. Further, the treatment decreased the number of plaques formed by human coronavirus OC43 (HCoV-OC43) infection and decreased viral protein and RNA levels in the media. These results indicate that eupatin inhibits coronavirus replication.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Flavonoids/pharmacology , Endopeptidases , Antiviral Agents/pharmacology
3.
J Nat Prod ; 86(6): 1536-1549, 2023 Jun 23.
Article in English | MEDLINE | ID: covidwho-20233730

ABSTRACT

Aurones are a small subgroup of flavonoids in which the basic C6-C3-C6 skeleton is arranged as (Z)-2-benzylidenebenzofuran-3(2H)-one. These compounds are structural isomers of flavones and flavonols, natural products reported as potent inhibitors of SARS-CoV-2 replication. Herein, we report the design, synthesis, and anti-SARS-CoV-2 activity of a series of 25 aurones bearing different oxygenated groups (OH, OCH3, OCH2OCH3, OCH2O, OCF2H, and OCH2C6H4R) at the A- and/or B-rings using cell-based screening assays. We observed that 12 of the 25 compounds exhibit EC50 < 3 µM (8e, 8h, 8j, 8k, 8l, 8m, 8p, 8q, 8r, 8w, 8x, and 8y), of which five presented EC50 < 1 µM (8h, 8m, 8p, 8q, and 8w) without evident cytotoxic effect in Calu-3 cells. The substitution of the A- and/or B-ring with OCH3, OCH2OCH3, and OCF2H groups seems beneficial for the antiviral activity, while the corresponding phenolic derivatives showed a significant decrease in the anti-SARS-CoV-2 activity. The most potent compound of the series, aurone 8q (EC50 = 0.4 µM, SI = 2441.3), is 2 to 3 times more effective than the polyphenolic flavonoids myricetin (2) and baicalein (1), respectively. Investigation of the five more active compounds as inhibitors of SARS-CoV-2 3CLpro based on molecular dynamic calculations suggested that these aurones should detach from the active site of 3CLpro, and, probably, they could bind to another SARS-CoV-2 protein target (either receptor or enzyme).


Subject(s)
Benzofurans , COVID-19 , Humans , SARS-CoV-2 , Benzofurans/pharmacology , Flavonoids/pharmacology , Flavonoids/chemistry , Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , Molecular Docking Simulation
4.
PeerJ ; 11: e15086, 2023.
Article in English | MEDLINE | ID: covidwho-2322074

ABSTRACT

Yellow head virus (YHV) is one of the most important pathogens in prawn cultivation. The outbreak of YHV could potentially result in collapses in aquaculture industries. Although a flurry of development has been made in searching for preventive and therapeutic approaches against YHV, there is still no effective therapy available in the market. Previously, computational screening has suggested a few cancer drugs to be used as YHV protease (3CLpro) inhibitors. However, their toxic nature is still of concern. Here, we exploited various computational approaches, such as deep learning-based structural modeling, molecular docking, pharmacological prediction, and molecular dynamics simulation, to search for potential YHV 3CLpro inhibitors. A total of 272 chalcones and flavonoids were in silico screened using molecular docking. The bioavailability, toxicity, and specifically drug-likeness of hits were predicted. Among the hits, molecular dynamics simulation and trajectory analysis were performed to scrutinize the compounds with high binding affinity. Herein, the four selected compounds including chalcones cpd26, cpd31 and cpd50, and a flavonoid DN071_f could be novel potent compounds to prevent YHV and GAV propagation in shrimp. The molecular mechanism at the atomistic level is also enclosed that can be used to further antiviral development.


Subject(s)
Chalcones , Roniviridae , Peptide Hydrolases , Molecular Docking Simulation , Chalcones/pharmacology , Flavonoids/pharmacology , Endopeptidases
5.
Daru ; 31(1): 51-68, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2326703

ABSTRACT

OBJECTIVES: This scoping review aims to present flavonoid compounds' promising effects and possible mechanisms of action on potential therapeutic targets in the SARS-CoV-2 infection process. METHODS: A search of electronic databases such as PubMed and Scopus was carried out to evaluate the performance of substances from the flavonoid class at different stages of SARS-CoV-2 infection. RESULTS: The search strategy yielded 382 articles after the exclusion of duplicates. During the screening process, 265 records were deemed as irrelevant. At the end of the full-text appraisal, 37 studies were considered eligible for data extraction and qualitative synthesis. All the studies used virtual molecular docking models to verify the affinity of compounds from the flavonoid class with crucial proteins in the replication cycle of the SARS-CoV-2 virus (Spike protein, PLpro, 3CLpro/ MPro, RdRP, and inhibition of the host's ACE II receptor). The flavonoids with more targets and lowest binding energies were: orientin, quercetin, epigallocatechin, narcissoside, silymarin, neohesperidin, delphinidin-3,5-diglucoside, and delphinidin-3-sambubioside-5-glucoside. CONCLUSION: These studies allow us to provide a basis for in vitro and in vivo assays to assist in developing drugs for the treatment and prevention of COVID-19.


Subject(s)
COVID-19 , Humans , Molecular Docking Simulation , SARS-CoV-2 , Flavonoids/pharmacology , Flavonoids/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
6.
Molecules ; 28(9)2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2313124

ABSTRACT

In the present study, we investigated the antiviral activities of 17 flavonoids as natural products. These derivatives were evaluated for their in vitro antiviral activities against HIV and SARS-CoV-2. Their antiviral activity was evaluated for the first time based on POM (Petra/Osiris/Molispiration) theory and docking analysis. POM calculation was used to analyze the atomic charge and geometric characteristics. The side effects, drug similarities, and drug scores were also assumed for the stable structure of each compound. These results correlated with the experimental values. The bioinformatics POM analyses of the relative antiviral activities of these derivatives are reported for the first time.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Angiotensin-Converting Enzyme 2 , Pharmacophore , Flavonoids/pharmacology , SARS-CoV-2 , Computers , Molecular Docking Simulation
7.
Viruses ; 15(4)2023 04 18.
Article in English | MEDLINE | ID: covidwho-2305267

ABSTRACT

New antiviral treatments are needed to deal with the unpredictable emergence of viruses. Furthermore, vaccines and antivirals are only available for just a few viral infections, and antiviral drug resistance is an increasing concern. Cyanidin (a natural product also called A18), a key flavonoid that is present in red berries and other fruits, attenuates the development of several diseases, through its anti-inflammatory effects. Regarding its mechanism of action, A18 was identified as an IL-17A inhibitor, resulting in the attenuation of IL-17A signaling and associated diseases in mice. Importantly, A18 also inhibits the NF-κB signaling pathway in different cell types and conditions in vitro and in vivo. In this study, we report that A18 restricts RSV, HSV-1, canine coronavirus, and SARS-CoV-2 multiplication, indicating a broad-spectrum antiviral activity. We also found that A18 can control cytokine and NF-κB induction in RSV-infected cells independently of its antiviral activity. Furthermore, in mice infected with RSV, A18 not only significantly reduces viral titers in the lungs, but also diminishes lung injury. Thus, these results provide evidence that A18 could be used as a broad-spectrum antiviral and may contribute to the development of novel therapeutic targets to control these viral infections and pathogenesis.


Subject(s)
Antiviral Agents , COVID-19 , Mice , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2/metabolism , NF-kappa B/metabolism , Interleukin-17 , Flavonoids/pharmacology
8.
Molecules ; 28(6)2023 Mar 17.
Article in English | MEDLINE | ID: covidwho-2287535

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has majorly impacted public health and economies worldwide. Although several effective vaccines and drugs are now used to prevent and treat COVID-19, natural products, especially flavonoids, showed great therapeutic potential early in the pandemic and thus attracted particular attention. Quercetin, baicalein, baicalin, EGCG (epigallocatechin gallate), and luteolin are among the most studied flavonoids in this field. Flavonoids can directly or indirectly exert antiviral activities, such as the inhibition of virus invasion and the replication and inhibition of viral proteases. In addition, flavonoids can modulate the levels of interferon and proinflammatory factors. We have reviewed the previously reported relevant literature researching the pharmacological anti-SARS-CoV-2 activity of flavonoids where structures, classifications, synthetic pathways, and pharmacological effects are summarized. There is no doubt that flavonoids have great potential in the treatment of COVID-19. However, most of the current research is still in the theoretical stage. More studies are recommended to evaluate the efficacy and safety of flavonoids against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonoids/chemistry , Quercetin/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry
9.
Int J Mol Sci ; 24(3)2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2263449

ABSTRACT

Flavonoids have been shown to have anti-oxidative effects, as well as other health benefits (e.g., anti-inflammatory and anti-tumor functions). Luteolin (3', 4', 5,7-tetrahydroxyflavone) is a flavonoid found in vegetables, fruits, flowers, and herbs, including celery, broccoli, green pepper, navel oranges, dandelion, peppermint, and rosemary. Luteolin has multiple useful effects, especially in regulating inflammation-related symptoms and diseases. In this paper, we summarize the studies about the immunopharmacological activity of luteolin on anti-inflammatory, anti-cardiovascular, anti-cancerous, and anti-neurodegenerative diseases published since 2018 and available in PubMed or Google Scholar. In this review, we also introduce some additional formulations of luteolin to improve its solubility and bioavailability.


Subject(s)
Flavonoids , Luteolin , Humans , Luteolin/pharmacology , Luteolin/therapeutic use , Flavonoids/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Vegetables , Chronic Disease
10.
PLoS One ; 18(3): e0282729, 2023.
Article in English | MEDLINE | ID: covidwho-2262648

ABSTRACT

The leaves of Azadirachta indica L. and Melia azedarach L., belonging to Meliaceae family, have been shown to have medicinal benefits and are extensively employed in traditional folk medicine. Herein, HPLC analysis of the ethyl acetate fraction of the total methanolic extract emphasized the enrichment of both A. indica L., and M. azedarach L. leaves extracts with phenolic and flavonoids composites, respectively. Besides, 4 limonoids and 2 flavonoids were isolated using column chromatography. By assessing the in vitro antiviral activities of both total leaves extracts against Severe Acute Respiratory Syndrome Corona virus 2 (SARS-CoV-2), it was found that A. indica L. and M. azedarach L. have robust anti-SARS-CoV-2 activities at low half-maximal inhibitory concentrations (IC50) of 8.451 and 6.922 µg/mL, respectively. Due to the high safety of A. indica L. and M. azedarach L. extracts with half-maximal cytotoxic concentrations (CC50) of 446.2 and 351.4 µg/ml, respectively, both displayed extraordinary selectivity indices (SI>50). A. indica L. and M. azedarach L. leaves extracts could induce antibacterial activities against both Gram-negative and positive bacterial strains. The minimal inhibitory concentrations of A. indica L. and M. azedarach L. leaves extracts varied from 25 to 100 mg/mL within 30 min contact time towards the tested bacteria. Our findings confirm the broad-spectrum medicinal value of A. indica L. and M. azedarach L. leaves extracts. Finally, additional in vivo investigations are highly recommended to confirm the anti-COVID-19 and antimicrobial activities of both plant extracts.


Subject(s)
Azadirachta , COVID-19 , Melia azedarach , SARS-CoV-2 , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Bacteria , Plant Extracts/pharmacology , Plant Extracts/analysis , Plant Leaves/chemistry , Flavonoids/pharmacology , Flavonoids/analysis
11.
J Oleo Sci ; 72(3): 283-293, 2023.
Article in English | MEDLINE | ID: covidwho-2265143

ABSTRACT

In this study, a comparison of the intra-regional variation in the quality of Argan oil and pomace collected from 12 cooperatives in the Essaouira region (Morocco) during the COVID-19 period was carried out. All studied Argan pomaces together with the extraction solvents showed a significant difference (p ≤ 0.05) in the total phenolic compounds, flavonoids, and tannins contents. The proteins, residual oils, total sugars, and total reducing sugars contents in the collected pomaces vary considerably among cooperatives of origin, with maximum averages of 50.45%; 30.05%; 3.82 milligrams of glucose equivalent per gram of dry matter; and 0.53 milligrams of glucose equivalent per gram of dry matter, respectively. Therefore, it is a very valuable ingredient for livestock feed and some cosmetic products that may contain it. The remaining Argan oil content in the pomace varied significantly among cooperatives, ranging from 8.74 to 30.05%. Pomace from traditional extraction recorded the highest content (30.05%), showing that the artisanal and modern extraction processes are not standardized. The measurements of acidity, peroxide value, specific extinction coefficient at 232 nm and 270 nm, and conjugated dienes were carried out in accordance with Moroccan Standard 08.5.090 in order to qualitatively classify all investigated Argan oils. Accordingly, the analyzed oils were categorized as "extra virgin Argan oil," "fine virgin Argan oil," "ordinary virgin Argan oil," and "lampante virgin Argan oil." Therefore, several factors can explain these variations in quality grades, both endogenous and exogenous. Overall, the variation observed in the obtained result allows us to deduce the most significant variables impacting the quality of Argan products and by-products.


Subject(s)
COVID-19 , Humans , Morocco , Dietary Carbohydrates , Flavonoids , Glucose
12.
Phytother Res ; 37(3): 1092-1114, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2277307

ABSTRACT

The SARS-CoV-2 outbreak has been one of the largest public health crises globally, while thrombotic complications have emerged as an important factor contributing to mortality. Therefore, compounds that regulate the processes involved in thrombosis could represent a dietary strategy to prevent thrombotic complications involved in COVID-19. In August 2022, various databases were consulted using the keywords "flavonoids", "antiplatelet", "anticoagulant", "fibrinolytic", and "nitric oxide". Studies conducted between 2019 and 2022 were chosen. Flavonoids, at concentrations mainly between 2 and 300 µM, are capable of regulating platelet aggregation, blood coagulation, fibrinolysis, and nitric oxide production due to their action on multiple receptors and enzymes. Most of the studies have been carried out through in vitro and in silico models, and limited studies have reported the in vivo and clinical effect of flavonoids. Currently, quercetin has been the only flavonoid evaluated clinically in patients with COVID-19 for its effect on D-dimer levels. Therefore, clinical studies in COVID-19 patients analyzing the effect on platelet, coagulant, fibrinolytic, and nitric oxide parameters are required. In addition, further high-quality studies that consider cytotoxic safety and bioavailability are required to firmly propose flavonoids as a treatment for the thrombotic complications implicated in COVID-19.


Subject(s)
COVID-19 , Thrombosis , Humans , COVID-19/complications , Flavonoids , SARS-CoV-2 , Thrombosis/etiology , Thrombosis/prevention & control , Nitric Oxide
13.
Sci Rep ; 13(1): 5328, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2258659

ABSTRACT

SARS-CoV-2 has been responsible for the major worldwide pandemic of COVID-19. Despite the enormous success of vaccination campaigns, virus infections are still prevalent and effective antiviral therapies are urgently needed. Viroporins are essential for virus replication and release, and are thus promising therapeutic targets. Here, we studied the expression and function of recombinant ORF3a viroporin of SARS-CoV-2 using a combination of cell viability assays and patch-clamp electrophysiology. ORF3a was expressed in HEK293 cells and transport to the plasma membrane verified by a dot blot assay. Incorporation of a membrane-directing signal peptide increased plasma membrane expression. Cell viability tests were carried out to measure cell damage associated with ORF3a activity, and voltage-clamp recordings verified its channel activity. The classical viroporin inhibitors amantadine and rimantadine inhibited ORF3a channels. A series of ten flavonoids and polyphenolics were studied. Kaempferol, quercetin, epigallocatechin gallate, nobiletin, resveratrol and curcumin were ORF3a inhibitors, with IC50 values ranging between 1 and 6 µM, while 6-gingerol, apigenin, naringenin and genistein were inactive. For flavonoids, inhibitory activity could be related to the pattern of OH groups on the chromone ring system. Thus, the ORF3a viroporin of SARS-CoV-2 may indeed be a promising target for antiviral drugs.


Subject(s)
Adamantane , COVID-19 , Humans , Viroporin Proteins , SARS-CoV-2 , HEK293 Cells , Flavonoids
14.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2254926

ABSTRACT

Plant roots, due to a high content of natural antioxidants for many years, have been used in herbal medicine. It has been documented that the extract of Baikal skullcap (Scutellaria baicalensis) has hepatoprotective, calming, antiallergic, and anti-inflammatory properties. Flavonoid compounds found in the extract, including baicalein, have strong antiradical activity, which improves overall health and increases feelings of well-being. Plant-derived bioactive compounds with antioxidant activity have for a long time been used as an alternative source of medicines to treat oxidative stress-related diseases. In this review, we summarized the latest reports on one of the most important aglycones with respect to the pharmacological activity and high content in Baikal skullcap, which is 5,6,7-trihydroxyflavone (baicalein).


Subject(s)
Flavanones , Scutellaria baicalensis , Humans , Flavanones/pharmacology , Plant Extracts/pharmacology , Flavonoids/pharmacology , Antioxidants/pharmacology , Plant Roots
15.
Molecules ; 28(5)2023 Mar 03.
Article in English | MEDLINE | ID: covidwho-2283974

ABSTRACT

The demand for bee products has been growing, especially regarding their application in complementary medicine. Apis mellifera bees using Baccharis dracunculifolia D.C. (Asteraceae) as substrate produce green propolis. Among the examples of bioactivity of this matrix are antioxidant, antimicrobial, and antiviral actions. This work aimed to verify the impact of the experimental conditions applied in low- and high-pressure extractions of green propolis, using sonication (60 kHz) as pretreatment to determine the antioxidant profile in the extracts. Total flavonoid content (18.82 ± 1.15-50.47 ± 0.77 mgQE·g-1), total phenolic compounds (194.12 ± 3.40-439.05 ± 0.90 mgGAE·g-1) and antioxidant capacity by DPPH (33.86 ± 1.99-201.29 ± 0.31 µg·mL-1) of the twelve green propolis extracts were determined. By means of HPLC-DAD, it was possible to quantify nine of the fifteen compounds analyzed. The results highlighted formononetin (4.76 ± 0.16-14.80 ± 0.02 mg·g-1) and p-coumaric acid (

Subject(s)
Propolis , Animals , Propolis/chemistry , Antioxidants/chemistry , Brazil , Flavonoids/chemistry , Plant Extracts/chemistry , Chromatography, High Pressure Liquid
16.
Viruses ; 15(1)2023 Jan 04.
Article in English | MEDLINE | ID: covidwho-2271892

ABSTRACT

COVID-19 is still a global public health concern, and the SARS-CoV-2 mutations require more effective antiviral agents. In this study, the antiviral entry activity of thirty-one flavonoids was systematically evaluated by a SARS-CoV-2 pseudovirus model. Twenty-four flavonoids exhibited antiviral entry activity with IC50 values ranging from 10.27 to 172.63 µM and SI values ranging from 2.33 to 48.69. The structure-activity relationship of these flavonoids as SARS-CoV-2 entry inhibitors was comprehensively summarized. A subsequent biolayer interferometry assay indicated that flavonoids bind to viral spike RBD to block viral interaction with ACE2 receptor, and a molecular docking study also revealed that flavonols could bind to Pocket 3, the non-mutant regions of SARS-CoV-2 variants, suggesting that flavonols might be also active against virus variants. These natural flavonoids showed very low cytotoxic effects on human normal cell lines. Our findings suggested that natural flavonoids might be potential antiviral entry agents against SARS-CoV-2 via inactivating the viral spike. It is hoped that our study will provide some encouraging evidence for the use of natural flavonoids as disinfectants to prevent viral infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Docking Simulation , Flavonoids/pharmacology , Antiviral Agents/pharmacology , Flavonols , Spike Glycoprotein, Coronavirus/metabolism , Protein Binding
17.
Biotechnol Appl Biochem ; 69(5): 2028-2045, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2285281

ABSTRACT

Phytochemicals are the natural biomolecules produced by plants via primary or secondary metabolism, which have been known to have many potential health benefits to human beings. Flavonoids or phytoestrogens constitute a major group of such phytochemicals widely available in variety of vegetables, fruits, herbs, tea, and so forth, implicated in a variety of bio-pharmacological and biochemical activities against diseases including bacterial, viral, cancer, inflammatory, and autoimmune disorders. More recently, these natural biomolecules have been shown to have effective antiviral properties via therapeutically active ingredients within them, acting at different stages of infection. Current review emphasizes upon the role of these flavonoids in physiological functions, prevention and treatment of viral diseases. More so the review focuses specifically upon the antiviral effects exhibited by these natural biomolecules against RNA viruses including coronaviruses. Furthermore, the article would certainly provide a lead to the scientific community for the effective therapeutic antiviral use of flavonoids using potential cost-effective tools for improvement of the pharmacokinetics, bioavailability, and biodistribution of such compounds for the concrete action along with the promotion of human health.


Subject(s)
Antiviral Agents , Phytochemicals , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Tissue Distribution , Phytochemicals/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonoids/chemistry , Plant Extracts/chemistry , Polyphenols
18.
J Mol Model ; 28(12): 404, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2276780

ABSTRACT

Despite the development of vaccines against COVID-19 disease and the multiple efforts to find efficient drugs as treatment for this virus, there are too many social, political, economic, and health inconveniences to incorporate a fully accessible plan of prevention and therapy against SARS-CoV-2. In this sense, it is necessary to find nutraceutical/pharmaceutical drugs as possible COVID-19 preventives/treatments. Based on their beneficial effects, flavonoids are one of the most promising compounds. Therefore, using virtual screening, 478 flavonoids obtained from the KEGG database were evaluated against non-structural proteins Nsp1, Nsp3, Nsp5, Nsp12, and Nsp15, which are essential for the virus-host cell infection, searching for possible multitarget flavonoids. Amentoflavone, a biflavonoid found mainly in Ginkgo biloba, Lobelia chinensis, and Byrsonima intermedia, can interact and bind with the five proteins, suggesting its potential as a multitarget inhibitor. Molecular docking calculations and structural analysis (RMSD, number of H bonds, and clustering) performed from molecular dynamics simulations of the amentoflavone-protein complex support this potential. The results shown here are theoretical evidence of the probable multitarget inhibition of non-structural proteins of SARS-CoV-2 by amentoflavone, which has wide availability, low cost, no side effects, and long history of use. These results are solid evidence for future in vitro and in vivo experiments aiming to validate amentoflavone as an inhibitor of the Nsp1, 3, 5, 12, and 15 of SARS-CoV-2.


Subject(s)
Biflavonoids , COVID-19 Drug Treatment , Humans , Biflavonoids/pharmacology , SARS-CoV-2 , Flavonoids/pharmacology , Molecular Docking Simulation , COVID-19 Vaccines
19.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: covidwho-2245613

ABSTRACT

Computer modeling is a method that is widely used in scientific investigations to predict the biological activity, toxicity, pharmacokinetics, and synthesis strategy of compounds based on the structure of the molecule. This work is a systematic review of articles performed in accordance with the recommendations of PRISMA and contains information on computer modeling of the interaction of classical flavonoids with different biological targets. The review of used computational approaches is presented. Furthermore, the affinities of flavonoids to different targets that are associated with the infection, cardiovascular, and oncological diseases are discussed. Additionally, the methodology of bias risks in molecular docking research based on principles of evidentiary medicine was suggested and discussed. Based on this data, the most active groups of flavonoids and lead compounds for different targets were determined. It was concluded that flavonoids are a promising object for drug development and further research of pharmacology by in vitro, ex vivo, and in vivo models is required.


Subject(s)
Computers , Flavonoids , Computer Simulation , Flavonoids/chemistry , Flavonoids/pharmacology , Molecular Docking Simulation
20.
Chin J Nat Med ; 21(1): 65-80, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2184754

ABSTRACT

Acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had caused a global pandemic since 2019, and posed a serious threat to global health security. Traditional Chinese medicine (TCM) has played an indispensable role in the battle against the epidemic. Many components originated from TCMs were found to inhibit the production of SARS-CoV-2 3C-like protease (3CLpro) and papain-like protease (PLpro), which are two promising therapeutic targets to inhibit SARS-CoV-2. This study describes a systematic investigation of the roots and rhizomes of Sophora tonkinensis, which results in the characterization of 12 new flavonoids, including seven prenylated flavanones (1-7), one prenylated flavonol (8), two prenylated chalcones (9-10), one isoflavanone (11), and one isoflavan dimer (12), together with 43 known compounds (13-55). Their structures including the absolute configurations were elucidated by comprehensive analysis of MS, 1D and 2D NMR data, and time-dependent density functional theory electronic circular dichroism (TDDFT ECD) calculations. Compounds 12 and 51 exhibited inhibitory effects against SARS-CoV-2 3CLpro with IC50 values of 34.89 and 19.88 µmol·L-1, repectively while compounds 9, 43 and 47 exhibited inhibitory effects against PLpro with IC50 values of 32.67, 79.38, and 16.74 µmol·L-1, respectively.


Subject(s)
COVID-19 , Flavonoids , Flavonoids/pharmacology , Flavonoids/chemistry , SARS-CoV-2 , Rhizome , Peptide Hydrolases , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL